IJ-1309

B.Sc. (Part - II)

Term End Examination, 2018

MATHEMATICS

Paper - I

Advanced Calculus

Time : Three Hours]
 [Maximum Marks : 50

नोट : प्रत्येक प्रश्नों से किन्हीं दो भागों को हल कीजिए। सभी प्रश्नों के अंक समान हैं।
Note : Answer any two parts from each question. All questions carry equal marks.

इकाई / Unit-I

1. (a) निम्नलिखित श्रेणी के अभिसरण का परीक्षण

कीजिए :

$$
\begin{aligned}
& x^{2}(\log 2)^{q}+x^{3}(\log 3)^{q}+x^{4}(\log 4)^{q}+\ldots . \\
& x>0
\end{aligned}
$$

Test the convergence of the series:
$x^{2}(\log 2)^{q}+x^{3}(\log 3)^{q}+x^{4}(\log 4)^{q}+\ldots .$,
$x>0$
(b) यदि $\left\{a_{n}\right\}_{n=1}^{\infty}$ वास्तविक संख्याओं का ऐसा अनुक्रम हो कि $\lim _{n \rightarrow \infty} \frac{a_{n}+1}{a_{n}}=1$, जहाँ $||\mid<1$, तब सिद्ध कीजिए कि $\lim _{n \rightarrow \infty} a_{n}=0$ । If $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence such that $\lim _{n \rightarrow \infty} \frac{a_{n}+1}{a_{n}}=1$, where $|l|<1$ then prove that $\lim _{n \rightarrow \infty} a_{n}=0$.

OR

(a) उस श्रेणी की अभिसारिता का परीक्षण कीजिए जिसका n वाँ पद है :

$$
\frac{n^{p}}{(n+1)^{p+\alpha}}
$$

Test the convergence of series whose $n^{\text {th }}$ term is :

$$
\frac{n^{p}}{(n+1)^{p+\alpha}}
$$

(b) एक दिष्ट अनुक्रम एक अभिसारी अनुक्रम होगा यदि और केवल यदि वह परिबद्ध हो, दिखाइए। Show that monotone sequence is convergent if and only if it is bounded.

इकाई / Unit-II

2. (a) यदि फलन $f(x)$ एवं फलन $g(x)$ किसी बिन्दु $x=a$ पर संतत हैं, तो फलन $f(x) \cdot g(x)$ भी बिन्दु $x=a$ पर संतत होता है। सिद्ध कीजिए।

If $f(x)$ and $g(x)$ are continuous functions at a point $x=a$, then $f(x) \cdot g(x)$ is also continuous at $x=a$. Prove it.
(b) निम्नलिखित फलन के $x=1$ पर सांतत्य की विवेचना कीजिए

$$
f(x)=\left\{\begin{array}{rrr}
1+x^{2}, & \text { when } & 0 \leq x \leq 1 \\
1-x, & \text { when } & x>1
\end{array}\right.
$$

Discuss the continuity at $x=1$ of the following function :

$$
\begin{gathered}
f(x)=\left\{\begin{array}{rrr}
1+x^{2}, & \text { when } & 0 \leq x \leq 1 \\
1-x, & \text { when } & x>1
\end{array}\right. \\
\text { OR }
\end{gathered}
$$

(a) रोले प्रमेय को लिखिए तथा सिद्ध कीजिए। State and prove Rolle's Theorem.
(b) फलन $f(x)=\sqrt{x^{2}-4}$ के लिए अन्तराल $[2,4]$ में लैग्रांज के माध्यमान प्रमेय को सत्यापित कीजिए।

Verify Lagrange's Mean value theorem for the function $f(x)=\sqrt{x^{2}-4}$ in the interval [2,4].

इकाई/Unit-III

3. (a) सीमा की परिभाषा का प्रयोग कर सिद्ध कीजिए कि फलन $f(x, y)=\sqrt{x} \cdot \sqrt{y}: x \geq 0, y \geq 0$ मूल बिन्दु पर सतत है।
Using definition of limit, prove that the function $f(x, y)=\sqrt{x} \cdot \sqrt{y}: x \geq 0, y \geq 0$ is continuous at origin.
(b) यदि $x=a \cosh \alpha \cos \beta, y=a \sinh \alpha \sin \beta$, तो दिखाइये कि

$$
\frac{\partial(x, y)}{\partial(\alpha, \beta)}=\frac{a^{2}}{2}[\cosh 2 \alpha-\cos 2 \beta]
$$

If $x=a \cosh \alpha \cos \beta, y=a \sinh \alpha \sin \beta$, then show that:

$$
\frac{\partial(x, y)}{\partial(\alpha, \beta)}=\frac{a^{2}}{2}[\cosh 2 \alpha-\cos 2 \beta]
$$

OR
(a) यदि $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, सिद्ध कीजिए कि

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=-\frac{3}{(x+y+z)^{2}}
$$

If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, then show that:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=-\frac{3}{(x+y+z)^{2}}
$$

(b) यदि $f(x, y)=e^{x y}$, तब बिन्दु $(1,1)$ पर फलन का प्रसार टेलर श्रेणी ज्ञात कीजिए।

If $f(x, y)=e^{x y}$, then find the expansion of the function by Taylor's series at the point (1, 1).

इकाई / Unit-IV

4. (a) सरल रेखाओं के कुल $a x \sec \alpha-$ by $\operatorname{cosec} \alpha=a^{2}-b^{2}$ का एन्वलप ज्ञात कीजिए, जहाँ कोण α प्राचल है।
Find the envelope of the family of lines $a x \sec \alpha-b y \operatorname{cosec} \alpha=a^{2}-b^{2}$, where the parameter is the angle α.
(b) फलन $x^{2}+y^{2}+z^{2}$ का निम्निष्ठ मान ज्ञात कीजिए, जबकि $a x+b y+c z=P$ दिया गया है।
Find the minimum value of $x^{2}+y^{2}+z^{2}$ having given $a x+b y+c z=P$.

OR

(a) दिर्घवृत्त $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ का केन्द्रज ज्ञात कीजिए।

Find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(b) फलन $u=x^{3}+y^{3}-3 a x y$ के उच्चिष्ठ अथवा निम्निष्ठ की विवेचना कीजिए।

Discuss the maximum or minimum values of the function $u=x^{3}+y^{3}-3 a x y$.

इकाई / Unit-V

5. (a) दिशः समाकलन में क्रम परिवर्तन कीजिए

$$
\int_{0}^{2 a} \int_{x^{2} / 4 a}^{3 a-x} f(x, y) d x d y
$$

Change the order of double integral

$$
\int_{0}^{2 a} \int_{x^{2} / 4 a}^{3 a-x} f(x, y) d x d y
$$

(b) मान ज्ञात कीजिए :

$$
\int_{0}^{\infty} \frac{x^{4}\left(1+x^{5}\right)}{(1+x)^{15}} d x
$$

Evaluate :

$$
\int_{0}^{\infty} \frac{x^{4}\left(1+x^{5}\right)}{(1+x)^{15}} d x
$$

> OR
(a) समाकल $\iiint(x+z) d x d y d z$ का मान ज्ञात कीजिए जबकि समाकलन क्षेत्र $x^{2}+y^{2}+z^{2} \leq 1$, $x \geq 0, y \geq 0$ और $z \geq 0$ परिभाषित हैं।

Find the value of the integral $\iiint(x+z) d x d y d z$ where region of the integral are defined as $x^{2}+y^{2}+z^{2} \leq 1$, $x \geq 0, y \geq 0$ and $z \geq 0$.

(8)

(b) सिद्ध कीजिए कि :

$$
\int_{0}^{1} \frac{d x}{\left(1+x^{4}\right)^{1 / 2}}=\frac{\pi}{4 \sqrt{2}}
$$

Prove that :

$$
\int_{0}^{1} \frac{d x}{\left(1+x^{4}\right)^{1 / 2}}=\frac{\pi}{4 \sqrt{2}}
$$

IJ-1310

B.Sc. (Part - II)

Term End Examination, 2018

MATHEMATICS

Paper - II

Differential Equations

Time : Three Hours] [Maximum Marks : 50

नोट : प्रत्येक इकाई से किन्हीं दो प्रश्नों को हल कीजिए। सभी प्रश्नों के अंक समान हैं।
Note : Answer any two questions from each Unit. All questions carry equal marks.

इकाई / Unit-I

1. सिद्ध कीजिए :

$$
J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \phi-x \sin \phi) d \phi
$$

जहाँ n एक घनात्मक पूर्णांक है।

Prove that :

$$
J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \phi-x \sin \phi) d \phi
$$

Where n is a positive integer.
2. फलन $f(x)=10 x^{3}-3 x^{2}-5 x-1$ को लीजेन्ड्रे बहुपद के रूप में व्यक्त कीजिए।
Express the function $f(x)=10 x^{3}-3 x^{2}-5 x-1$ in terms of Legendre polynomials.
3. स्टर्म ल्यूविलि समस्या

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0 \text {, जहाँ } y(0)=0, y(l)=0
$$

के समस्त अभिलाक्षणिक मानों एवं संगत अभिलाक्षणिक फलनों को ज्ञात कीजिए।

Find all the eigen values and eigen functions of the following Sturm-Liouville problem

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0, \text { where } y(0)=0, y(l)=0
$$

इकाई / Unit-II

4. मान ज्ञात कीजिए :
(a) $L\left\{e^{-t}(3 \sinh 2 t-5 \cosh 2 t)\right\}$
(b) $\left.L\left\{t^{2} \sin a t\right)\right\}$

Find the value of :
(a) $L\left\{e^{-1}(3 \sinh 2 t-5 \cosh 2 t)\right\}$
(b) $\left.L\left\{f^{2} \sin a t\right)\right\}$
5. मान ज्ञात कीजिए :
(a) $L^{-1}\left\{\log \left(1-\frac{1}{p^{2}}\right)\right\}$
(b) $L^{-1}\left\{\frac{p+1}{\left(p^{2}+2 p+2\right)^{2}}\right\}$

Find the value of :
(a) $L^{-1}\left\{\log \left(1-\frac{1}{p^{2}}\right)\right\}$
(b) $L^{-1}\left\{\frac{p+1}{\left(p^{2}+2 p+2\right)^{2}}\right\}$
6. लाप्लास रूपान्तर का प्रयोग करके निम्नलिखित समाकल समीकरण को हल कीजिए:

$$
\int_{0} \frac{F(u)}{\sqrt{t-u}}=1+t+t^{2}
$$

Solve the following integral equation by using Laplace transform :

$$
\int_{0} \frac{F(u)}{\sqrt{t-u}}=1+t+t^{2}
$$

इकाई / Unit-III

7. निम्नलिखित संबंध से स्वेच्छ फलन ϕ का विलोपन करके आंशिक अवकलन समीकरण का निर्माण कीजिए :

$$
\phi\left(x+y+z, x^{2}+y^{2}-z^{2}\right)=0
$$

Find the partial differential equation by eliminating the arbitrary function ϕ from the following relation :

$$
\phi\left(x+y+z, x^{2}+y^{2}-z^{2}\right)=0
$$

8. आंशिक अवकल समीकरण का पूर्ण समाकल एवं विचित्र हल ज्ञात कीजिए :

$$
p^{3}+q^{3}=27 z
$$

Find the complete integral and singular solution of the partial differential equation:

$$
p^{3}+q^{3}=27 z
$$

9. चारपिट विधि से निम्न आंशिक अवकल समीकरण का पूर्ण समाकल ज्ञात कीजिए:

$$
p x+q y=p q
$$

Find the complete integral of the following partial differential equation by using Charpit's method:

$$
p x+q y=p q
$$

इकाई / Unit-IV

10. हल कीजिए :

$$
s-t=\frac{x}{y^{2}}
$$

Solve :

$$
s-t=\frac{x}{y^{2}}
$$

11. आंशिक अवकल समीकरण को हल कीजिए:

$$
\frac{\partial^{3} z}{\partial x^{3}}-4 \frac{\partial^{3} z}{\partial x^{2} \partial y}+4 \frac{\partial^{3} z}{\partial x \partial y^{2}}=4 \sin (2 x+y)
$$

Solve the partial differential equation:

$$
\frac{\partial^{3} z}{\partial x^{3}}-4 \frac{\partial^{3} z}{\partial x^{2} \partial y}+4 \frac{\partial^{3} z}{\partial x \partial y^{2}}=4 \sin (2 x+y)
$$

12. मोन्जे विधि से हल कीजिए :

$$
x^{2} r+2 x y s+y^{2} t=0
$$

Solve by Monge's method:

$$
x^{2} r+2 x y s+y^{2} t=0
$$

इकाई/Unit-V

13. निम्नलिखित फलनक के चरम मान के लिए परीक्षण कीजिए :
$I[y(x)]=\oint_{0}^{4}\left[x y^{\prime}-y^{\prime 2}\right] d x, y(0)=0 ; y(4)=3$
Test for an extremum the functional:
$I[y(x)]=\int_{0}^{4}\left[x y^{\prime}-y^{\prime 2}\right] d x, y(0)=0 ; y(4)=3$
14. निम्नलिखित फलनक का आयलर-ओस्ट्राग्रेडस्की समीकरण ज्ञात कीजिए:

$$
I[z(x, y)]=\iint_{D}\left[p^{2}+q^{2}+2 z f(x, y)\right] d x d y
$$

Find the Euler-Ostrogradsky equation of the functional :

$$
I[z(x, y)]=\iint_{D}\left[p^{2}+q^{2}+2 z f(x, y)\right] d x d y
$$

IJ-1311

B.Sc. (Part - II)

Term End Examination, 2018

MATHEMATICS

Paper - III
Mechanics
Time : Three Hours] [Maximum Marks : 50

नोट : प्रत्येक प्रश्न से किन्हीं दो भागों को हल कीजिए। सभी प्रश्नों के अंक समान हैं।
Note : Answer any two parts from each question. All questions carry equal marks.

इकाई / Unit-I

1. (a) रेखाओं $x+y=1, y-x=1, y=2$ द्वारा निर्मित त्रिभुज की भुजाओं के अनुदिश तीन बल P, Q, R क्रियाशील हैं। उनके क्रिया रेखा का समीकरण ज्ञात कीजिए।
Three forces P, Q, R acting along the sides of triangle through lines $x+y=1, y-x=1$, $y=2$. Find the equation of Resultant line.
(3)

इकाई/ Unit-II

2. (a) एक बल P, x अक्ष के अनुदिश क्रिया करता है, एक अन्य बल $n p$ बेलन, $x^{2}+y^{2}=a^{2}$ के एक जनक के अनुदिश क्रिया करता है, दर्शाइए कि केन्द्रीय अक्ष बेलन,

$$
n^{2}(n x-z)^{2}+\left(1+n^{2}\right)^{2} y^{2}=n^{4} a^{2}
$$

पर स्थित है।
A force P acts along the axis x and another force $n p$ along a generator of the cylinder $x^{2}+y^{2}=a^{2}$. Show that the central axis lies on the cylinder

$$
n^{2}(n x-z)^{2}+\left(1+n^{2}\right)^{2} y^{2}=n^{4} a^{2}
$$

(b) समतल $l x+m y+n z=1$ का शून्य विक्षेप स्थिति ज्ञात कीजिए।

Find out null point of the plane $l x+m y+n z=1$.
(c) दर्शाइए की किसी दिए गए बल निकाय के लिए राशियाँ $L X+M Z+N Z$ एवं $x^{2}+y^{2}+z^{2}$ निश्चर रहती हैं।
To show that the quantities $L X+M Z+N Z$ and $x^{2}+y^{2}+z^{2}$ are invariant for any given system of forces.

इकाई/Unit-III

3. a) एक कण दो बलों के केन्द्रों, जिनका आकर्षण दूरी के समानुपाती हैं के आकर्षण के अन्तर्गत साम्यवस्था में है। उनकी तीव्रताएँ μ तथा μ^{1} है। उनमें किसी एक की ओर अल्पमात्र विस्थापित कर दिया गया है। दर्शाइए कि अल्प दोलन का समय $\frac{2 \pi}{\sqrt{\mu+\mu^{1}}}$ है।
A particle rests in equilibrium under the attraction of two centres of forces which attract directly as the distance, their intensity being μ, μ^{1}. The particle is slightly displaced towards one of them, show that
the time of a small oscillation is $\frac{2 \pi}{\sqrt{\mu+\mu^{1}}}$.
(b) एक कण P अचर वेग से एक वक्र बनाता है तथा किसी नियत बिन्दु O के सापेक्ष इसका कोणीय वेग इसकी O से दूरी के व्युत्क्रमानुपाती है। सिद्ध कीजिए कि वक्र एकसमान कोणीय सर्पिल है ? A particle P describes a curve with constant velocity and its angular velocity about a given fixed point O varies inversely as its distance from O, show that the curve is an equiangular spiral.
(5)
(c) एक तोप एक गतिशील प्लेटफार्म से चलाई जाती है जब प्लेटफार्म V वेग से आगे तथा पीछे चलता है तो गोली के परास क्रमशः R तथा S प्राप्त होते हैं। सिद्ध कीजिए कि तोप का उन्नतांश कोण

$$
\tan ^{-1}\left[\frac{g(R-S)^{2}}{4 V^{2}(R+S)}\right] \text { है। }
$$

A gun if fixed from a moving platform and the ranges of the shot are observed to be R and S when the platform is moving forward and backward respectively with velocity V. Prove that the elevation of the gun is

$$
\tan ^{-1}\left[\frac{g(R-S)^{2}}{4 V^{2}(R+S)}\right]
$$

इकाई/Unit-IV
4. (a) एक कण नाभि की ओर दिष्ट एक बल $\frac{\mu}{(\text { दूरी })^{2}}$ के अंतर्गत एक दोर्घवृत निर्मित करता है। यदि यह बल केन्द्र से दूरी r पर एक बिन्दु से वेग V से प्रक्षिप्त किया गया था, तो दर्शाइए कि इसका आवर्तकाल निम्न है

$$
\frac{2 \pi}{\sqrt{\mu}}\left(\frac{2}{r}-\frac{V^{2}}{\mu}\right)^{-\frac{3}{2}}
$$

JDB_298_*_(8)
(6)

A particle describes an ellipse under a force $\frac{\mu}{(\text { distance })^{2}}$ towards the focus. If it was projected with velocity V from a point distance r from the centre of force, show that its periodic time is

$$
\frac{2 \pi}{\sqrt{\mu}}\left(\frac{2}{r}-\frac{v^{2}}{\mu}\right)^{-\frac{3}{2}}
$$

(b) एक अचर वेग V से एक वक्र पर भ्रमण करता है, जिसके लिए S तथा ψ दोनों साथ साथ शून्य होते हैं। यदि किसी बिन्दु S पर त्वरण $\frac{V^{2} C}{S^{2}+C^{2}}$ हो, तो सिद्ध कीजिए कि वक्र एक कैटनरी है।

A particle describes a curve for which S and ψ vanish simultaneously with the uniform speed V. If the acceleration at any point S be $\frac{V^{2} C}{S^{2}+C^{2}}$, then prove that the curve is catenary.
(7)
(c) एक कण एक चिकने चक्रज, जिसका अक्ष उर्द्धवाधर एवं शीर्ष नीचे की ओर है, के कस्प से चाप पर नीचे की ओर V वेग से प्रक्षिप्त किया जाता है। दर्शाइए कि शीर्ष पर पहुचने का समय निम्न हो

$$
2 \sqrt{\frac{a}{g}} \cdot \tan ^{-1} \cdot\left(\frac{\sqrt{4 a g}}{V}\right)
$$

A particle is projected with velocity V from the cusp of a smooth cycloid whose axis is verticle and vertex downwards, down the arc. Show that the time of reaching the vertex is

$$
2 \sqrt{\frac{a}{g}} \cdot \tan ^{-1} \cdot\left(\frac{\sqrt{4 a g}}{V}\right)
$$

इकाई/Unit-V

5. (a) जब गुरूत्वीय आकर्षण में कोई कण उर्द्धवाधरत: U वेग से ऊपर की ओर प्रक्षेपित किया जाए तथा माध्यम का प्रतिरोधी बल उसके वेग के समानुपाती हो, तो दर्शाइए कि

$$
x=\frac{V}{g}(V+U)\left(1-e^{-\frac{g t}{V}}\right)-V t
$$

जहाँ V अंतिम वेग है

When a particle is projected upwards under gravity in a resisting medium, whose resistance varies as the square of the velocity, then show that

$$
x=\frac{V}{g}(V+U)\left(1-e^{-\frac{g t}{V}}\right)-V t
$$

where V is the terminal velocity.
(b) तरल की एक गोलाकार बुंद वाष्प में गिरते हुए संघनन द्वारा C की अचर दर से द्रव्यमान प्राप्त करती है। दर्शाइए कि विराम में गिरते हुए t समय बाद इसका वेग

$$
\frac{1}{2} g t\left[1+\frac{M}{M+C t}\right] \text { है। }
$$

The spherical drop of liquid falling freely in a vapour acquires moist by condensation at a constant rate C. Show that the velocity after falling from rest in time t is

$$
\frac{1}{2} g t\left[1+\frac{M}{M+C t}\right]
$$

(c) बेलनीय निर्देशांक के पदों में किसी कण का त्वरण ज्ञात कीजिए।
Find acceleration of the particle in terms of cylindrical coordinates.

